Почему размер numpy.median так хорошо?
Вопрос, который я недавно получил на собеседовании, был:
Write a data structure that supports two operations.
1. Adding a number to the structure.
2. Calculating the median.
The operations to add a number and calculate the median must have a minimum time complexity.
Моя реализация была довольно простой, в основном сохраняя сортировку элементов, таким образом, добавление элементов стоит O (log (n)) вместо O (1), но медиана - это O (1) вместо O (n * log (n) )
Я также добавил реализацию, которая наивна, но содержит элементы в массиве numpy:
import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
from random import randint, random
import math
from time import time
class MedianList():
def __init__(self, initial_values = []):
self.values = sorted(initial_values)
self.size = len(initial_values)
def add_element(self, element):
index = self.find_pos(self.values, element)
self.values = self.values[:index] + [element] + self.values[index:]
self.size += 1
def find_pos(self, values, element):
if len(values) == 0: return 0
index = int(len(values)/2)
if element > values[index]:
return self.find_pos(values[index+1:], element) + index + 1
if element < values[index]:
return self.find_pos(values[:index], element)
if element == values[index]: return index
def median(self):
if self.size == 0: return np.nan
split = math.floor(self.size/2)
if self.size % 2 == 1:
return self.values[split]
try:
return (self.values[split] + self.values[split-1])/2
except:
print(self.values, self.size, split)
class NaiveMedianList():
def __init__(self, initial_values = []):
self.values = sorted(initial_values)
def add_element(self, element):
self.values.append(element)
def median(self):
split = math.floor(len(self.values)/2)
sorted_values = sorted(self.values)
if len(self.values) % 2 == 1:
return sorted_values[split]
return (sorted_values[split] + sorted_values[split-1])/2
class NumpyMedianList():
def __init__(self, initial_values = []):
self.values = np.array(initial_values)
def add_element(self, element):
self.values = np.append(self.values, element)
def median(self):
return np.median(self.values)
def time_performance(median_list, total_elements = 10**5):
elements = [randint(0, 100) for _ in range(total_elements)]
times = []
start = time()
for element in elements:
median_list.add_element(element)
median_list.median()
times.append(time() - start)
return times
ml_times = time_performance(MedianList())
nl_times = time_performance(NaiveMedianList())
npl_times = time_performance(NumpyMedianList())
times = pd.DataFrame()
times['MedianList'] = ml_times
times['NaiveMedianList'] = nl_times
times['NumpyMedianList'] = npl_times
times.plot()
plt.show()
И вот как выглядят представления, для 10 ^ 4 элементов:
И для 10 ^ 5 элементов наивная реализация numpy на самом деле быстрее:
Мой вопрос: как получилось? Даже если numpy быстрее с постоянным коэффициентом, как их медиана функция масштабируется так хорошо, если они не сохраняют отсортированную версию массива?
Ответы
Ответ 1
Мы можем проверить исходный код Numpy для median
(источник):
def median(a, axis=None, out=None, overwrite_input=False, keepdims=False):
...
if overwrite_input:
if axis is None:
part = a.ravel()
part.partition(kth)
else:
a.partition(kth, axis=axis)
part = a
else:
part = partition(a, kth, axis=axis)
...
Ключевой функцией является partition
, который из документов использует introselect. Как заметил @zython, это вариант Quickselect, который обеспечивает критическое повышение производительности.