Какова сложность Big O для реверсирования порядка столбцов в Pandas DataFrame?
Так что скажем, у меня есть DataFrame в пандах с am строк и n столбцов. Позвольте также сказать, что я хотел бы изменить порядок столбцов, что можно сделать с помощью следующего кода:
df_reversed = df[df.columns[::-1]]
Какова большая сложность этой операции? Я предполагаю, что это будет зависеть от количества столбцов, но будет ли оно также зависеть от количества строк?
Ответы
Ответ 1
Я не знаю, как это делает Пандас, но я испытал его эмпирически. Я проверил следующий код (в ноутбуке Jupyter), чтобы проверить скорость работы:
def get_dummy_df(n):
return pd.DataFrame({'a': [1,2]*n, 'b': [4,5]*n, 'c': [7,8]*n})
df = get_dummy_df(100)
print df.shape
%timeit df_r = df[df.columns[::-1]]
df = get_dummy_df(1000)
print df.shape
%timeit df_r = df[df.columns[::-1]]
df = get_dummy_df(10000)
print df.shape
%timeit df_r = df[df.columns[::-1]]
df = get_dummy_df(100000)
print df.shape
%timeit df_r = df[df.columns[::-1]]
df = get_dummy_df(1000000)
print df.shape
%timeit df_r = df[df.columns[::-1]]
df = get_dummy_df(10000000)
print df.shape
%timeit df_r = df[df.columns[::-1]]
Выход был:
(200, 3)
1000 loops, best of 3: 419 µs per loop
(2000, 3)
1000 loops, best of 3: 425 µs per loop
(20000, 3)
1000 loops, best of 3: 498 µs per loop
(200000, 3)
100 loops, best of 3: 2.66 ms per loop
(2000000, 3)
10 loops, best of 3: 25.2 ms per loop
(20000000, 3)
1 loop, best of 3: 207 ms per loop
Как вы можете видеть, в первых трех случаях накладные расходы на операцию - это то, что занимает большую часть времени (400-500 мкс), но из 4-го случая время, которое требуется, начинает пропорционально количеству данных, увеличивая по порядку величины каждый раз.
Итак, если предположить, что также должна быть пропорция n, то, по-видимому, мы имеем дело с O (m * n)
Ответ 2
Сложность Big O (начиная с Pandas 0.24) равна m*n
где m
- количество столбцов, а n
- количество строк. Обратите внимание, что при использовании DataFrame.__getitem__
(aka []
) с Index
(см. Соответствующий код, с другими типами, которые будут запускать копию).
Вот полезная трассировка стека:
<ipython-input-4-3162cae03863>(2)<module>()
1 columns = df.columns[::-1]
----> 2 df_reversed = df[columns]
pandas/core/frame.py(2682)__getitem__()
2681 # either boolean or fancy integer index
-> 2682 return self._getitem_array(key)
2683 elif isinstance(key, DataFrame):
pandas/core/frame.py(2727)_getitem_array()
2726 indexer = self.loc._convert_to_indexer(key, axis=1)
-> 2727 return self._take(indexer, axis=1)
2728
pandas/core/generic.py(2789)_take()
2788 axis=self._get_block_manager_axis(axis),
-> 2789 verify=True)
2790 result = self._constructor(new_data).__finalize__(self)
pandas/core/internals.py(4539)take()
4538 return self.reindex_indexer(new_axis=new_labels, indexer=indexer,
-> 4539 axis=axis, allow_dups=True)
4540
pandas/core/internals.py(4421)reindex_indexer()
4420 new_blocks = self._slice_take_blocks_ax0(indexer,
-> 4421 fill_tuple=(fill_value,))
4422 else:
pandas/core/internals.py(1254)take_nd()
1253 new_values = algos.take_nd(values, indexer, axis=axis,
-> 1254 allow_fill=False)
1255 else:
> pandas/core/algorithms.py(1658)take_nd()
1657 import ipdb; ipdb.set_trace()
-> 1658 func = _get_take_nd_function(arr.ndim, arr.dtype, out.dtype, axis=axis,
1659 mask_info=mask_info)
1660 func(arr, indexer, out, fill_value)
func
вызова на L1660 в pandas/core/algorithms
, в конечном счете вызывает функцию Cython с O(m * n)
сложности. Это где данные из исходных данных копируются в out
. out
содержит копию исходных данных в обратном порядке.
inner_take_2d_axis0_template = """\
cdef:
Py_ssize_t i, j, k, n, idx
%(c_type_out)s fv
n = len(indexer)
k = values.shape[1]
fv = fill_value
IF %(can_copy)s:
cdef:
%(c_type_out)s *v
%(c_type_out)s *o
#GH3130
if (values.strides[1] == out.strides[1] and
values.strides[1] == sizeof(%(c_type_out)s) and
sizeof(%(c_type_out)s) * n >= 256):
for i from 0 <= i < n:
idx = indexer[i]
if idx == -1:
for j from 0 <= j < k:
out[i, j] = fv
else:
v = &values[idx, 0]
o = &out[i, 0]
memmove(o, v, <size_t>(sizeof(%(c_type_out)s) * k))
return
for i from 0 <= i < n:
idx = indexer[i]
if idx == -1:
for j from 0 <= j < k:
out[i, j] = fv
else:
for j from 0 <= j < k:
out[i, j] = %(preval)svalues[idx, j]%(postval)s
"""
Обратите внимание, что в приведенной выше функции шаблона есть путь, который использует memmove
(это путь, принятый в этом случае, потому что мы сопоставляем от int64
до int64
а размерность вывода идентична, поскольку мы просто переключаем индексы). Обратите внимание, что memmove
все еще O (n), будучи пропорциональным количеству байтов, которые он должен копировать, хотя, вероятно, быстрее, чем напрямую записывать индексы.
Ответ 3
Я побежал эмпирический тест, используя big_O
фитинга библиотеки здесь
Примечание. Все тесты проводились на независимой переменной, изменяющейся на 6 порядков (т.е.
-
rows
от 10
до 10^6
против постоянного размера column
3
, -
columns
от 10
до 10^6
против постоянного размера row
10
Результат показывает, что сложность columns
обратного действия .columns[::-1]
в DataFrame
- Cubical:
O(n^3)
где n - количество rows
- Cubical:
O(n^3)
где n - количество columns
Предварительные требования: вам нужно будет установить big_o()
с помощью команды terminal pip install big_o
Код
import big_o
import pandas as pd
import numpy as np
SWEAP_LOG10 = 6
COLUMNS = 3
ROWS = 10
def build_df(rows, columns):
# To isolated the creation of the DataFrame from the inversion operation.
narray = np.zeros(rows*columns).reshape(rows, columns)
df = pd.DataFrame(narray)
return df
def flip_columns(df):
return df[df.columns[::-1]]
def get_row_df(n, m=COLUMNS):
return build_df(1*10**n, m)
def get_column_df(n, m=ROWS):
return build_df(m, 1*10**n)
# infer the big_o on columns[::-1] operation vs. rows
best, others = big_o.big_o(flip_columns, get_row_df, min_n=1, max_n=SWEAP_LOG10,n_measures=SWEAP_LOG10, n_repeats=10)
# print results
print('Measuring .columns[::-1] complexity against rapid increase in # rows')
print('-'*80 + '\nBig O() fits: {}\n'.format(best) + '-'*80)
for class_, residual in others.items():
print('{:<60s} (res: {:.2G})'.format(str(class_), residual))
print('-'*80)
# infer the big_o on columns[::-1] operation vs. columns
best, others = big_o.big_o(flip_columns, get_column_df, min_n=1, max_n=SWEAP_LOG10,n_measures=SWEAP_LOG10, n_repeats=10)
# print results
print()
print('Measuring .columns[::-1] complexity against rapid increase in # columns')
print('-'*80 + '\nBig O() fits: {}\n'.format(best) + '-'*80)
for class_, residual in others.items():
print('{:<60s} (res: {:.2G})'.format(str(class_), residual))
print('-'*80)
Результаты
Measuring .columns[::-1] complexity against rapid increase in # rows
--------------------------------------------------------------------------------
Big O() fits: Cubic: time = -0.017 + 0.00067*n^3
--------------------------------------------------------------------------------
Constant: time = 0.032 (res: 0.021)
Linear: time = -0.051 + 0.024*n (res: 0.011)
Quadratic: time = -0.026 + 0.0038*n^2 (res: 0.0077)
Cubic: time = -0.017 + 0.00067*n^3 (res: 0.0052)
Polynomial: time = -6.3 * x^1.5 (res: 6)
Logarithmic: time = -0.026 + 0.053*log(n) (res: 0.015)
Linearithmic: time = -0.024 + 0.012*n*log(n) (res: 0.0094)
Exponential: time = -7 * 0.66^n (res: 3.6)
--------------------------------------------------------------------------------
Measuring .columns[::-1] complexity against rapid increase in # columns
--------------------------------------------------------------------------------
Big O() fits: Cubic: time = -0.28 + 0.009*n^3
--------------------------------------------------------------------------------
Constant: time = 0.38 (res: 3.9)
Linear: time = -0.73 + 0.32*n (res: 2.1)
Quadratic: time = -0.4 + 0.052*n^2 (res: 1.5)
Cubic: time = -0.28 + 0.009*n^3 (res: 1.1)
Polynomial: time = -6 * x^2.2 (res: 16)
Logarithmic: time = -0.39 + 0.71*log(n) (res: 2.8)
Linearithmic: time = -0.38 + 0.16*n*log(n) (res: 1.8)
Exponential: time = -7 * 1^n (res: 9.7)
--------------------------------------------------------------------------------