Ответ 1
Там более умный способ сделать это. Если n
делится на каждое целое число в диапазоне (1, 21), то оно должно быть кратным наименьшее общее число этих целых чисел,
Вы можете вычислить LCM набора чисел постепенно, используя GCD (наибольший общий делитель). Вы можете импортировать функцию gcd из модуля fractions
или реализовать ее непосредственно в вашем коде.
def gcd(a, b):
''' Greatest Common Divisor '''
while b:
a, b = b, a % b
return a
def lcm(a, b):
''' Least Common Multiple '''
return a * b // gcd(a, b)
# Compute the LCM of range(1, 21)
n = 2
for i in range(3, 21):
n = lcm(n, i)
lcm20 = n
print('LCM =', lcm20)
#test
for i in range(1, 21):
print(i, lcm20 % i)
Выход
LCM = 232792560
1 0
2 0
3 0
4 0
5 0
6 0
7 0
8 0
9 0
10 0
11 0
12 0
13 0
14 0
15 0
16 0
17 0
18 0
19 0
20 0
Теперь, чтобы проверить, если любое число n
делится на все числа, это диапазон (1, 21), вы можете просто сделать
n % lcm20 == 0
или скопируйте константу в свой script:
# 232792560 is the LCM of 1..20
n % 232792560 == 0
Как отмечает Антон Шервуд в своем комментарии, мы можем ускорить процесс поиска требуемого LCM, просто взяв LCM в верхней половине диапазона. Это работает, потому что каждое число в нижней половине диапазона является делителем числа в верхней половине диапазона.
Мы можем улучшить скорость еще больше, объединив вычисления GCD и LCM, а не вызывающие функции для выполнения этих операций. Вызов функций Python заметно медленнее вызовов функций C из-за дополнительных накладных расходов.
Якк упоминает альтернативный подход к поиску требуемого LCM: вычислить произведение главных степеней в диапазоне. Это довольно быстро, если диапазон достаточно большой (около 40 или около того), но для небольших чисел простой цикл LCM выполняется быстрее.
Ниже приведен код timeit
, который сравнивает скорость этих различных подходов. Этот script работает на Python 2 и 3, я тестировал его на Python 2.6 и Python 3.6. Он использует функцию главного списка Роберта Уильяма Хэнкса для реализации предложения Якка. Я немного изменил код Роберта, чтобы сделать его совместимым с Python 3. Я полагаю, что может быть более эффективный способ найти основные полномочия; если так, я бы хотел это увидеть.:)
Ранее я упоминал, что в модуле fractions
есть функция GCD. Я провел с ним несколько тестов времени, но это заметно медленнее, чем мой код. Предположительно, потому что он выполняет проверку ошибок в аргументах.
#!/usr/bin/env python3
''' Least Common Multiple of the numbers in range(1, m)
Speed tests
Written by PM 2Ring 2016.08.04
'''
from __future__ import print_function
from timeit import Timer
#from fractions import gcd
def gcd(a, b):
''' Greatest Common Divisor '''
while b:
a, b = b, a % b
return a
def lcm(a, b):
''' Least Common Multiple '''
return a * b // gcd(a, b)
def primes(n):
''' Returns a list of primes < n '''
# By Robert William Hanks, from https://stackoverflow.com/a/3035188/4014959
sieve = [True] * (n//2)
for i in range(3, int(n ** 0.5) + 1, 2):
if sieve[i//2]:
sieve[i*i//2::i] = [False] * ((n - i*i - 1) // (2*i) + 1)
return [2] + [2*i + 1 for i in range(1, n//2) if sieve[i]]
def lcm_range_PM(m):
''' The LCM of range(1, m) '''
n = 1
for i in range(2, m):
n = lcm(n, i)
return n
def lcm_range_AS(m):
''' The LCM of range(1, m) '''
n = m // 2
for i in range(n + 1, m):
n = lcm(n, i)
return n
def lcm_range_fast(m):
''' The LCM of range(1, m) '''
n = m // 2
for i in range(n + 1, m):
a, b = n, i
while b:
a, b = b, a % b
n = n * i // a
return n
def lcm_range_primes(m):
n = 1
for p in primes(m):
a = p
while a < m:
a *= p
n *= a // p
return n
funcs = (
lcm_range_PM,
lcm_range_AS,
lcm_range_fast,
lcm_range_primes
)
def verify(hi):
''' Verify that all the functions give the same result '''
for i in range(2, hi + 1):
a = [func(i) for func in funcs]
a0 = a[0]
assert all(u == a0 for u in a[1:]), (i, a)
print('ok')
def time_test(loops, reps):
''' Print timing stats for all the functions '''
timings = []
for func in funcs:
fname = func.__name__
setup = 'from __main__ import num, ' + fname
cmd = fname + '(num)'
t = Timer(cmd, setup)
result = t.repeat(reps, loops)
result.sort()
timings.append((result, fname))
timings.sort()
for result, fname in timings:
print('{0:16} {1}'.format(fname, result))
verify(500)
reps = 3
loops = 8192
num = 2
for _ in range(10):
print('\nnum = {0}, loops = {1}'.format(num, loops))
time_test(loops, reps)
num *= 2
loops //= 2
print('\n' + '- ' * 40)
funcs = (
lcm_range_fast,
lcm_range_primes
)
loops = 1000
for num in range(30, 60):
print('\nnum = {0}, loops = {1}'.format(num, loops))
time_test(loops, reps)
Выход
ok
num = 2, loops = 8192
lcm_range_PM [0.013914467999711633, 0.01393848999941838, 0.023966414999449626]
lcm_range_fast [0.01656803699916054, 0.016577592001340236, 0.016578077998929075]
lcm_range_AS [0.01738608899904648, 0.017602848000024096, 0.01770572900022671]
lcm_range_primes [0.0979132459997345, 0.09863009199943917, 0.10133290699923236]
num = 4, loops = 4096
lcm_range_fast [0.01580070299860381, 0.01581421999981103, 0.016406731001552544]
lcm_range_AS [0.020135083001150633, 0.021132826999746612, 0.021589830999801052]
lcm_range_PM [0.02821666900126729, 0.029041511999821523, 0.036708851001094445]
lcm_range_primes [0.06287289499960025, 0.06381634699937422, 0.06406087200048205]
num = 8, loops = 2048
lcm_range_fast [0.015360695999333984, 0.02138442599971313, 0.02630166100061615]
lcm_range_AS [0.02104746699842508, 0.021742354998423252, 0.022648989999652258]
lcm_range_PM [0.03499621999981173, 0.03546843599906424, 0.042924503999529406]
lcm_range_primes [0.03741390599861916, 0.03865244000007806, 0.03959638999913295]
num = 16, loops = 1024
lcm_range_fast [0.015973221999956877, 0.01600381199932599, 0.01603960700049356]
lcm_range_AS [0.023003745000096387, 0.023848425998949097, 0.024875303000953863]
lcm_range_primes [0.028887982000014745, 0.029422679001072538, 0.029940758000520873]
lcm_range_PM [0.03780223299872887, 0.03925949299991771, 0.04462484900068375]
num = 32, loops = 512
lcm_range_fast [0.018606906000059098, 0.02557359899947187, 0.03725786200084258]
lcm_range_primes [0.021675119000065024, 0.022790905999499955, 0.03934840099827852]
lcm_range_AS [0.025330593998660333, 0.02545427500081132, 0.026093265998497372]
lcm_range_PM [0.044320442000753246, 0.044836185001258855, 0.05193238799984101]
num = 64, loops = 256
lcm_range_primes [0.01650579099987226, 0.02443148000020301, 0.033489004999864846]
lcm_range_fast [0.018367127000601613, 0.019002625000211992, 0.01955779200034158]
lcm_range_AS [0.026258470001266687, 0.04113643799973943, 0.0436801750001905]
lcm_range_PM [0.04854909000096086, 0.054864030998942326, 0.0797669980001956]
num = 128, loops = 128
lcm_range_primes [0.013294352000229992, 0.013383581999732996, 0.024317635999977938]
lcm_range_fast [0.02098568399924261, 0.02108044199849246, 0.03272008299973095]
lcm_range_AS [0.028861763999884715, 0.0399744570004259, 0.04660961700028565]
lcm_range_PM [0.05302166500041494, 0.059346372001527925, 0.07757829000001948]
num = 256, loops = 64
lcm_range_primes [0.010487794999789912, 0.010514846000660327, 0.01055656300013652]
lcm_range_fast [0.02619308099929185, 0.02637610199963092, 0.03755473099954543]
lcm_range_AS [0.03422451699952944, 0.03513622399987071, 0.05206341099983547]
lcm_range_PM [0.06851765200008231, 0.073690847000762, 0.07841700100107118]
num = 512, loops = 32
lcm_range_primes [0.009275872000216623, 0.009292663999076467, 0.009309271999882185]
lcm_range_fast [0.03759837500001595, 0.03774761099884927, 0.0383951439998782]
lcm_range_AS [0.04527828100071929, 0.046646228000099654, 0.0569303670017689]
lcm_range_PM [0.11064135100059502, 0.12738902800083451, 0.13843623499997193]
num = 1024, loops = 16
lcm_range_primes [0.009248070000467123, 0.00931658900117327, 0.010279963000357384]
lcm_range_fast [0.05642254200029129, 0.05663530499987246, 0.05796714499956579]
lcm_range_AS [0.06509247900066839, 0.0652738099997805, 0.0658949799999391]
lcm_range_PM [0.11376448099872505, 0.11652833600055601, 0.12083648199950403]
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
num = 30, loops = 1000
lcm_range_fast [0.03275446999941778, 0.033530079999763984, 0.04002811799909978]
lcm_range_primes [0.04062690899991139, 0.040886697999667376, 0.04130547800014028]
num = 31, loops = 1000
lcm_range_fast [0.03423191600086284, 0.039976395999474335, 0.04078094900069118]
lcm_range_primes [0.04053011599899037, 0.04140578700025799, 0.04566663300101936]
num = 32, loops = 1000
lcm_range_fast [0.036124262000157614, 0.036700047998238006, 0.04392546200142533]
lcm_range_primes [0.042666604998885305, 0.04393434200028423, 0.05142524700022477]
num = 33, loops = 1000
lcm_range_fast [0.03875456000059785, 0.03997290300139866, 0.044469664000644116]
lcm_range_primes [0.04280027899949346, 0.0437891679994209, 0.04381238600035431]
num = 34, loops = 1000
lcm_range_fast [0.038203157999305404, 0.03937257799952931, 0.04531203700025799]
lcm_range_primes [0.043273317998682614, 0.043349457999283914, 0.04420187600044301]
num = 35, loops = 1000
lcm_range_fast [0.04228670399970724, 0.04346491300020716, 0.047442203998798504]
lcm_range_primes [0.04332462999991549, 0.0433610400014004, 0.04525857199951133]
num = 36, loops = 1000
lcm_range_fast [0.04175829099949624, 0.04217126499861479, 0.046840714998324984]
lcm_range_primes [0.04339772299863398, 0.04360795700085873, 0.04453475599984813]
num = 37, loops = 1000
lcm_range_fast [0.04231068799890636, 0.04373836499871686, 0.05010528200000408]
lcm_range_primes [0.04371378700125206, 0.04463105400100176, 0.04481986299833807]
num = 38, loops = 1000
lcm_range_fast [0.042841554000915494, 0.043649038998410106, 0.04868016199907288]
lcm_range_primes [0.04571479200058093, 0.04654245399979118, 0.04671720700025617]
num = 39, loops = 1000
lcm_range_fast [0.04469198100014182, 0.04786454099848925, 0.05639159299971652]
lcm_range_primes [0.04572433999965142, 0.04583652600013011, 0.046649005000290344]
num = 40, loops = 1000
lcm_range_fast [0.044788433999201516, 0.046223339000789565, 0.05302252199908253]
lcm_range_primes [0.045482261000870494, 0.04680115900009696, 0.046941823999077315]
num = 41, loops = 1000
lcm_range_fast [0.04650144500010356, 0.04783133000091766, 0.05405569400136301]
lcm_range_primes [0.04678159699869866, 0.046870936999766855, 0.04726529199979268]
num = 42, loops = 1000
lcm_range_fast [0.04772527699969942, 0.04824955299955036, 0.05483534199993301]
lcm_range_primes [0.0478546140002436, 0.048954233001495595, 0.04905354400034412]
num = 43, loops = 1000
lcm_range_primes [0.047872637000182294, 0.048093739000250935, 0.048502418998396024]
lcm_range_fast [0.04906317900167778, 0.05292572700091114, 0.09274570399975346]
num = 44, loops = 1000
lcm_range_primes [0.049750300000596326, 0.050272532000235515, 0.05087747600009607]
lcm_range_fast [0.050906279000628274, 0.05109869400075695, 0.05820328499976313]
num = 45, loops = 1000
lcm_range_primes [0.050158660000306554, 0.050309066000409075, 0.054478109999763547]
lcm_range_fast [0.05236714599959669, 0.0539534259987704, 0.058996140000090236]
num = 46, loops = 1000
lcm_range_primes [0.049894845999006066, 0.0512076260001777, 0.051318084999365965]
lcm_range_fast [0.05081920200063905, 0.051397655999608105, 0.05722950699964713]
num = 47, loops = 1000
lcm_range_primes [0.04971165599999949, 0.05024208400027419, 0.051092388999677496]
lcm_range_fast [0.05388393700013694, 0.05502788499870803, 0.05994341699988581]
num = 48, loops = 1000
lcm_range_primes [0.0517014939996443, 0.05279760400117084, 0.052917389999493025]
lcm_range_fast [0.05402479099939228, 0.055251746000067214, 0.06128628700025729]
num = 49, loops = 1000
lcm_range_primes [0.05412415899991174, 0.05474224499994307, 0.05610057699959725]
lcm_range_fast [0.05757830900074623, 0.0590323519991216, 0.06310263200066402]
num = 50, loops = 1000
lcm_range_primes [0.054892387001018506, 0.05504404100065585, 0.05610281799999939]
lcm_range_fast [0.0588886920013465, 0.0594741389995761, 0.06682244199873821]
num = 51, loops = 1000
lcm_range_primes [0.05582956999933231, 0.055921465000210446, 0.06004790299994056]
lcm_range_fast [0.060586288000195054, 0.061715600999377784, 0.06733965300009004]
num = 52, loops = 1000
lcm_range_primes [0.0557458109997242, 0.05669860099988, 0.056761407999147195]
lcm_range_fast [0.060323355999571504, 0.06177857100010442, 0.06778404599936039]
num = 53, loops = 1000
lcm_range_primes [0.05501838899908762, 0.05541463699955784, 0.0561610999993718]
lcm_range_fast [0.06281833000139159, 0.06334177999997337, 0.06843207200108736]
num = 54, loops = 1000
lcm_range_primes [0.057314272000439814, 0.059501444000488846, 0.060004871998899034]
lcm_range_fast [0.06634221600143064, 0.06662889200015343, 0.07153233899953193]
num = 55, loops = 1000
lcm_range_primes [0.05790564500057371, 0.05824322199987364, 0.05863306900027965]
lcm_range_fast [0.06693624800027465, 0.06784769100158883, 0.07562533499913116]
num = 56, loops = 1000
lcm_range_primes [0.057219010001063, 0.05858367799919506, 0.06246676000046136]
lcm_range_fast [0.06854197999928147, 0.06999059400004626, 0.07505119899906276]
num = 57, loops = 1000
lcm_range_primes [0.05746709300001385, 0.0587476679993415, 0.0606189070003893]
lcm_range_fast [0.07094627400147147, 0.07241532700027165, 0.07868066799892404]
num = 58, loops = 1000
lcm_range_primes [0.0576490580006066, 0.058481812999161775, 0.05857339500107628]
lcm_range_fast [0.07127979200049595, 0.07549924399972952, 0.07849203499972646]
num = 59, loops = 1000
lcm_range_primes [0.057503377998727956, 0.058632499998566345, 0.060360438999850885]
lcm_range_fast [0.07332589399993594, 0.07625177999943844, 0.08087236799838138]
Эта информация о времени была сгенерирована с использованием Python 3.6, работающего на Debian-производном Linux, на старом 2-ГГц процессоре Pentium IV.