Ответ 1
Целочисленные квадратные корни от Джека У. Креншоу могут быть полезны в качестве другой ссылки.
В C Snippets Archive также реализована целочисленная реализация с квадратным корнем. Это выходит за пределы только целочисленного результата и вычисляет дополнительные дробные (фиксированные) биты ответа. (Обновление: к сожалению, архив фрагментов C теперь не функционирует. Ссылка указывает на веб-архив страницы.) Вот код из архива фрагментов C:
#define BITSPERLONG 32
#define TOP2BITS(x) ((x & (3L << (BITSPERLONG-2))) >> (BITSPERLONG-2))
struct int_sqrt {
unsigned sqrt, frac;
};
/* usqrt:
ENTRY x: unsigned long
EXIT returns floor(sqrt(x) * pow(2, BITSPERLONG/2))
Since the square root never uses more than half the bits
of the input, we use the other half of the bits to contain
extra bits of precision after the binary point.
EXAMPLE
suppose BITSPERLONG = 32
then usqrt(144) = 786432 = 12 * 65536
usqrt(32) = 370727 = 5.66 * 65536
NOTES
(1) change BITSPERLONG to BITSPERLONG/2 if you do not want
the answer scaled. Indeed, if you want n bits of
precision after the binary point, use BITSPERLONG/2+n.
The code assumes that BITSPERLONG is even.
(2) This is really better off being written in assembly.
The line marked below is really a "arithmetic shift left"
on the double-long value with r in the upper half
and x in the lower half. This operation is typically
expressible in only one or two assembly instructions.
(3) Unrolling this loop is probably not a bad idea.
ALGORITHM
The calculations are the base-two analogue of the square
root algorithm we all learned in grammar school. Since we're
in base 2, there is only one nontrivial trial multiplier.
Notice that absolutely no multiplications or divisions are performed.
This means it'll be fast on a wide range of processors.
*/
void usqrt(unsigned long x, struct int_sqrt *q)
{
unsigned long a = 0L; /* accumulator */
unsigned long r = 0L; /* remainder */
unsigned long e = 0L; /* trial product */
int i;
for (i = 0; i < BITSPERLONG; i++) /* NOTE 1 */
{
r = (r << 2) + TOP2BITS(x); x <<= 2; /* NOTE 2 */
a <<= 1;
e = (a << 1) + 1;
if (r >= e)
{
r -= e;
a++;
}
}
memcpy(q, &a, sizeof(long));
}
Я остановился на следующем коде. Это в основном из статьи статьи в области квадратичных методов вычислений. Но было изменено использование stdint.h
типов uint32_t
и т.д. Строго говоря, тип возврата можно было бы изменить на uint16_t
.
/**
* \brief Fast Square root algorithm
*
* Fractional parts of the answer are discarded. That is:
* - SquareRoot(3) --> 1
* - SquareRoot(4) --> 2
* - SquareRoot(5) --> 2
* - SquareRoot(8) --> 2
* - SquareRoot(9) --> 3
*
* \param[in] a_nInput - unsigned integer for which to find the square root
*
* \return Integer square root of the input value.
*/
uint32_t SquareRoot(uint32_t a_nInput)
{
uint32_t op = a_nInput;
uint32_t res = 0;
uint32_t one = 1uL << 30; // The second-to-top bit is set: use 1u << 14 for uint16_t type; use 1uL<<30 for uint32_t type
// "one" starts at the highest power of four <= than the argument.
while (one > op)
{
one >>= 2;
}
while (one != 0)
{
if (op >= res + one)
{
op = op - (res + one);
res = res + 2 * one;
}
res >>= 1;
one >>= 2;
}
return res;
}
Хорошо, я обнаружил, что довольно простая модификация может вернуть "округленный" ответ. Я нашел это полезным в определенном приложении для большей точности. Обратите внимание, что в этом случае возвращаемый тип должен быть uint32_t
, потому что закругленный квадратный корень из 2 32 - 1 равен 2 16.
/**
* \brief Fast Square root algorithm, with rounding
*
* This does arithmetic rounding of the result. That is, if the real answer
* would have a fractional part of 0.5 or greater, the result is rounded up to
* the next integer.
* - SquareRootRounded(2) --> 1
* - SquareRootRounded(3) --> 2
* - SquareRootRounded(4) --> 2
* - SquareRootRounded(6) --> 2
* - SquareRootRounded(7) --> 3
* - SquareRootRounded(8) --> 3
* - SquareRootRounded(9) --> 3
*
* \param[in] a_nInput - unsigned integer for which to find the square root
*
* \return Integer square root of the input value.
*/
uint32_t SquareRootRounded(uint32_t a_nInput)
{
uint32_t op = a_nInput;
uint32_t res = 0;
uint32_t one = 1uL << 30; // The second-to-top bit is set: use 1u << 14 for uint16_t type; use 1uL<<30 for uint32_t type
// "one" starts at the highest power of four <= than the argument.
while (one > op)
{
one >>= 2;
}
while (one != 0)
{
if (op >= res + one)
{
op = op - (res + one);
res = res + 2 * one;
}
res >>= 1;
one >>= 2;
}
/* Do arithmetic rounding to nearest integer */
if (op > res)
{
res++;
}
return res;
}