Ответ 1
Я нашел ответ сам, используя функциональный API Keras
from keras.applications import VGG16
from keras.layers import Dropout
from keras.models import Model
model = VGG16(weights='imagenet')
# Store the fully connected layers
fc1 = model.layers[-3]
fc2 = model.layers[-2]
predictions = model.layers[-1]
# Create the dropout layers
dropout1 = Dropout(0.85)
dropout2 = Dropout(0.85)
# Reconnect the layers
x = dropout1(fc1.output)
x = fc2(x)
x = dropout2(x)
predictors = predictions(x)
# Create a new model
model2 = Model(input=model.input, output=predictors)
model2
имеет выпадающие слои, как я хотел
____________________________________________________________________________________________________
Layer (type) Output Shape Param # Connected to
====================================================================================================
input_1 (InputLayer) (None, 3, 224, 224) 0
____________________________________________________________________________________________________
block1_conv1 (Convolution2D) (None, 64, 224, 224) 1792 input_1[0][0]
____________________________________________________________________________________________________
block1_conv2 (Convolution2D) (None, 64, 224, 224) 36928 block1_conv1[0][0]
____________________________________________________________________________________________________
block1_pool (MaxPooling2D) (None, 64, 112, 112) 0 block1_conv2[0][0]
____________________________________________________________________________________________________
block2_conv1 (Convolution2D) (None, 128, 112, 112) 73856 block1_pool[0][0]
____________________________________________________________________________________________________
block2_conv2 (Convolution2D) (None, 128, 112, 112) 147584 block2_conv1[0][0]
____________________________________________________________________________________________________
block2_pool (MaxPooling2D) (None, 128, 56, 56) 0 block2_conv2[0][0]
____________________________________________________________________________________________________
block3_conv1 (Convolution2D) (None, 256, 56, 56) 295168 block2_pool[0][0]
____________________________________________________________________________________________________
block3_conv2 (Convolution2D) (None, 256, 56, 56) 590080 block3_conv1[0][0]
____________________________________________________________________________________________________
block3_conv3 (Convolution2D) (None, 256, 56, 56) 590080 block3_conv2[0][0]
____________________________________________________________________________________________________
block3_pool (MaxPooling2D) (None, 256, 28, 28) 0 block3_conv3[0][0]
____________________________________________________________________________________________________
block4_conv1 (Convolution2D) (None, 512, 28, 28) 1180160 block3_pool[0][0]
____________________________________________________________________________________________________
block4_conv2 (Convolution2D) (None, 512, 28, 28) 2359808 block4_conv1[0][0]
____________________________________________________________________________________________________
block4_conv3 (Convolution2D) (None, 512, 28, 28) 2359808 block4_conv2[0][0]
____________________________________________________________________________________________________
block4_pool (MaxPooling2D) (None, 512, 14, 14) 0 block4_conv3[0][0]
____________________________________________________________________________________________________
block5_conv1 (Convolution2D) (None, 512, 14, 14) 2359808 block4_pool[0][0]
____________________________________________________________________________________________________
block5_conv2 (Convolution2D) (None, 512, 14, 14) 2359808 block5_conv1[0][0]
____________________________________________________________________________________________________
block5_conv3 (Convolution2D) (None, 512, 14, 14) 2359808 block5_conv2[0][0]
____________________________________________________________________________________________________
block5_pool (MaxPooling2D) (None, 512, 7, 7) 0 block5_conv3[0][0]
____________________________________________________________________________________________________
flatten (Flatten) (None, 25088) 0 block5_pool[0][0]
____________________________________________________________________________________________________
fc1 (Dense) (None, 4096) 102764544 flatten[0][0]
____________________________________________________________________________________________________
dropout_1 (Dropout) (None, 4096) 0 fc1[0][0]
____________________________________________________________________________________________________
fc2 (Dense) (None, 4096) 16781312 dropout_1[0][0]
____________________________________________________________________________________________________
dropout_2 (Dropout) (None, 4096) 0 fc2[1][0]
____________________________________________________________________________________________________
predictions (Dense) (None, 1000) 4097000 dropout_2[0][0]
====================================================================================================
Total params: 138,357,544
Trainable params: 138,357,544
Non-trainable params: 0
____________________________________________________________________________________________________