Ответ 1
Другая опция:
In [13]: numpy.where(mask)
Out[13]: (array([36, 68, 84, 92, 96, 98]),)
что является тем же самым, что и numpy.where(mask==True)
.
Есть ли эффективный механизм Numpy для извлечения целочисленных индексов местоположений в массиве на основе условия, это правда, в отличие от массива логических масок?
Например:
x=np.array([range(100,1,-1)])
#generate a mask to find all values that are a power of 2
mask=x&(x-1)==0
#This will tell me those values
print x[mask]
В этом случае я хотел бы знать индексы i
of mask
, где mask[i]==True
. Можно ли генерировать их без циклов?
Другая опция:
In [13]: numpy.where(mask)
Out[13]: (array([36, 68, 84, 92, 96, 98]),)
что является тем же самым, что и numpy.where(mask==True)
.
Вы можете использовать numpy.nonzero()
, чтобы найти эту информацию.
np.arange(100,1,-1)
array([100, 99, 98, 97, 96, 95, 94, 93, 92, 91, 90, 89, 88,
87, 86, 85, 84, 83, 82, 81, 80, 79, 78, 77, 76, 75,
74, 73, 72, 71, 70, 69, 68, 67, 66, 65, 64, 63, 62,
61, 60, 59, 58, 57, 56, 55, 54, 53, 52, 51, 50, 49,
48, 47, 46, 45, 44, 43, 42, 41, 40, 39, 38, 37, 36,
35, 34, 33, 32, 31, 30, 29, 28, 27, 26, 25, 24, 23,
22, 21, 20, 19, 18, 17, 16, 15, 14, 13, 12, 11, 10,
9, 8, 7, 6, 5, 4, 3, 2])
x=np.arange(100,1,-1)
np.where(x&(x-1) == 0)
(array([36, 68, 84, 92, 96, 98]),)
Теперь перефразируйте это как:
x[x&(x-1) == 0]
Если вы предпочитаете способ indexer, вы можете преобразовать свой логический список в массив numpy:
print x[nd.array(mask)]