Ответ 1
Вот несколько способов увеличения порядка длины кода:
t(t(mat) / dev)
mat / dev[col(mat)] # @DavidArenburg & @akrun
mat %*% diag(1 / dev)
sweep(mat, 2, dev, "/")
t(apply(mat, 1, "/", dev))
mat / rep(dev, each = nrow(mat))
mat / t(replace(t(mat), TRUE, dev))
library(plyr); aaply(mat, 1, "/", dev)
do.call(rbind, lapply(as.data.frame(t(mat)), "/", dev))
mat2 <- mat; for(i in seq_len(nrow(mat2))) mat2[i, ] <- mat2[i, ] / dev
Бенчмарки
Краткость и ясность кода могут быть более важными, чем скорость, но для целей полноты здесь приведены некоторые ориентиры с использованием 10 повторений, а затем 100 повторений.
library(microbenchmark)
library(plyr)
set.seed(84789)
mat<-matrix(runif(1e6),nrow=1e5)
dev<-runif(10)
microbenchmark(times=10L,
"1" = t(t(mat) / dev),
"2" = mat %*% diag(1/dev),
"3" = sweep(mat, 2, dev, "/"),
"4" = t(apply(mat, 1, "/", dev)),
"5" = mat / rep(dev, each = nrow(mat)),
"6" = mat / t(replace(t(mat), TRUE, dev)),
"7" = aaply(mat, 1, "/", dev),
"8" = do.call(rbind, lapply(as.data.frame(t(mat)), "/", dev)),
"9" = {mat2 <- mat; for(i in seq_len(nrow(mat2))) mat2[i, ] <- mat2[i, ] / dev},
"10" = mat/dev[col(mat)])
даяние:
Unit: milliseconds
expr min lq mean median uq max neval
1 7.957253 8.136799 44.13317 8.370418 8.597972 366.24246 10
2 4.678240 4.693771 10.11320 4.708153 4.720309 58.79537 10
3 15.594488 15.691104 16.38740 15.843637 16.559956 19.98246 10
4 96.616547 104.743737 124.94650 117.272493 134.852009 177.96882 10
5 17.631848 17.654821 18.98646 18.295586 20.120382 21.30338 10
6 19.097557 19.365944 27.78814 20.126037 43.322090 48.76881 10
7 8279.428898 8496.131747 8631.02530 8644.798642 8741.748155 9194.66980 10
8 509.528218 524.251103 570.81573 545.627522 568.929481 821.17562 10
9 161.240680 177.282664 188.30452 186.235811 193.250346 242.45495 10
10 7.713448 7.815545 11.86550 7.965811 8.807754 45.87518 10
Повторный запуск теста на всех тех, которые заняли менее 20 миллисекунд со 100 повторениями:
microbenchmark(times=100L,
"1" = t(t(mat) / dev),
"2" = mat %*% diag(1/dev),
"3" = sweep(mat, 2, dev, "/"),
"5" = mat / rep(dev, each = nrow(mat)),
"6" = mat / t(replace(t(mat), TRUE, dev)),
"10" = mat/dev[col(mat)])
даяние:
Unit: milliseconds
expr min lq mean median uq max neval
1 8.010749 8.188459 13.972445 8.560578 10.197650 299.80328 100
2 4.672902 4.734321 5.802965 4.769501 4.985402 20.89999 100
3 15.224121 15.428518 18.707554 15.836116 17.064866 42.54882 100
5 17.625347 17.678850 21.464804 17.847698 18.209404 303.27342 100
6 19.158946 19.361413 22.907115 19.772479 21.142961 38.77585 100
10 7.754911 7.939305 9.971388 8.010871 8.324860 25.65829 100
Итак, оба этих теста # 2 (с использованием diag
) являются самыми быстрыми. Причина может заключаться в почти прямом обращении к BLAS, тогда как # 1 полагается на более дорогостоящий t
.