Вычислить разницу между парами последовательных строк в кадре данных - R
У меня есть data.frame, в котором повторяется каждое имя гена и содержит значения для двух условий:
df <- data.frame(gene=c("A","A","B","B","C","C"),
condition=c("control","treatment","control","treatment","control","treatment"),
count=c(10, 2, 5, 8, 5, 1),
sd=c(1, 0.2, 0.1, 2, 0.8, 0.1))
gene condition count sd
1 A control 10 1.0
2 A treatment 2 0.2
3 B control 5 0.1
4 B treatment 8 2.0
5 C control 5 0.8
6 C treatment 1 0.1
Я хочу рассчитать, есть ли увеличение или уменьшение "счета" после лечения и маркировать их как таковые и/или подмножества. Это (псевдокод):
for each unique(gene) do
if df[geneRow1,3]-df[geneRow2,3] > 0 then gene is "up"
else gene is "down"
Это то, что должно выглядеть в конце (последние столбцы необязательны):
up-regulated
gene condition count sd regulation
B control 5 0.1 up
B treatment 8 2.0 up
down-regulated
gene condition count sd regulation
A control 10 1.0 down
A treatment 2 0.2 down
C control 5 0.8 down
C treatment 1 0.1 down
Я сгребал свой мозг этим, в том числе играл с ddply, и мне не удалось найти решение - пожалуйста, несчастный биолог.
Приветствия.
Ответы
Ответ 1
Решение plyr
будет выглядеть примерно так:
library(plyr)
reg.fun <- function(x) {
reg.diff <- x$count[x$condition=='control'] - x$count[x$condition=='treatment']
x$regulation <- ifelse(reg.diff > 0, 'up', 'down')
x
}
ddply(df, .(gene), reg.fun)
gene condition count sd regulation
1 A control 10 1.0 up
2 A treatment 2 0.2 up
3 B control 5 0.1 down
4 B treatment 8 2.0 down
5 C control 5 0.8 up
6 C treatment 1 0.1 up
>
Вы также можете подумать об этом с другим пакетом и/или с данными в другой форме:
df.w <- reshape(df, direction='wide', idvar='gene', timevar='condition')
library(data.table)
DT <- data.table(df.w, key='gene')
DT[, regulation:=ifelse(count.control-count.treatment > 0, 'up', 'down'), by=gene]
gene count.control sd.control count.treatment sd.treatment regulation
1: A 10 1.0 2 0.2 up
2: B 5 0.1 8 2.0 down
3: C 5 0.8 1 0.1 up
>
Ответ 2
Что-то вроде этого:
df$up.down <- with( df, ave(count, gene,
FUN=function(diffs) c("up", "down")[1+(diff(diffs) < 0) ]) )
spltdf <- split(df, df$up.down)
> df
gene condition count sd up.down
1 A control 10 1.0 down
2 A treatment 2 0.2 down
3 B control 5 0.1 up
4 B treatment 8 2.0 up
5 C control 5 0.8 down
6 C treatment 1 0.1 down
> spltdf
$down
gene condition count sd up.down
1 A control 10 1.0 down
2 A treatment 2 0.2 down
5 C control 5 0.8 down
6 C treatment 1 0.1 down
$up
gene condition count sd up.down
3 B control 5 0.1 up
4 B treatment 8 2.0 up