Ответ 1
multiprocessing
делает некоторые плохие выборы о травлении. Не поймите меня неправильно, он делает несколько хороших вариантов, которые позволяют ему определять определенные типы, чтобы их можно было использовать в функции карты пула. Однако, поскольку у нас есть dill
, который может делать травление, многопроцессорный собственный травитель становится немного ограничивающим. На самом деле, если multiprocessing
должен был использовать pickle
вместо cPickle
... и также отказаться от некоторых собственных переопределений травления, тогда dill
может взять на себя и дать гораздо более полную сериализацию для multiprocessing
.
До тех пор, пока это не произойдет, есть вилка multiprocessing
, называемая pathos (версия версии немного устарела, к сожалению), которая удаляет вышеупомянутые ограничения. Пафос также добавляет некоторые приятные функции, которые не имеют многопроцессорности, например multi-args в функции карты. Пафос должен быть выпущен после некоторого мягкого обновления - в основном преобразования в python 3.x.
Python 2.7.5 (default, Sep 30 2013, 20:15:49)
[GCC 4.2.1 (Apple Inc. build 5566)] on darwin
Type "help", "copyright", "credits" or "license" for more information.
>>> import dill
>>> from pathos.multiprocessing import ProcessingPool
>>> pool = ProcessingPool(nodes=4)
>>> result = pool.map(lambda x: x**2, range(10))
>>> result
[0, 1, 4, 9, 16, 25, 36, 49, 64, 81]
и просто чтобы показать немного того, что может сделать pathos.multiprocessing
...
>>> def busy_add(x,y, delay=0.01):
... for n in range(x):
... x += n
... for n in range(y):
... y -= n
... import time
... time.sleep(delay)
... return x + y
...
>>> def busy_squared(x):
... import time, random
... time.sleep(2*random.random())
... return x*x
...
>>> def squared(x):
... return x*x
...
>>> def quad_factory(a=1, b=1, c=0):
... def quad(x):
... return a*x**2 + b*x + c
... return quad
...
>>> square_plus_one = quad_factory(2,0,1)
>>>
>>> def test1(pool):
... print pool
... print "x: %s\n" % str(x)
... print pool.map.__name__
... start = time.time()
... res = pool.map(squared, x)
... print "time to results:", time.time() - start
... print "y: %s\n" % str(res)
... print pool.imap.__name__
... start = time.time()
... res = pool.imap(squared, x)
... print "time to queue:", time.time() - start
... start = time.time()
... res = list(res)
... print "time to results:", time.time() - start
... print "y: %s\n" % str(res)
... print pool.amap.__name__
... start = time.time()
... res = pool.amap(squared, x)
... print "time to queue:", time.time() - start
... start = time.time()
... res = res.get()
... print "time to results:", time.time() - start
... print "y: %s\n" % str(res)
...
>>> def test2(pool, items=4, delay=0):
... _x = range(-items/2,items/2,2)
... _y = range(len(_x))
... _d = [delay]*len(_x)
... print map
... res1 = map(busy_squared, _x)
... res2 = map(busy_add, _x, _y, _d)
... print pool.map
... _res1 = pool.map(busy_squared, _x)
... _res2 = pool.map(busy_add, _x, _y, _d)
... assert _res1 == res1
... assert _res2 == res2
... print pool.imap
... _res1 = pool.imap(busy_squared, _x)
... _res2 = pool.imap(busy_add, _x, _y, _d)
... assert list(_res1) == res1
... assert list(_res2) == res2
... print pool.amap
... _res1 = pool.amap(busy_squared, _x)
... _res2 = pool.amap(busy_add, _x, _y, _d)
... assert _res1.get() == res1
... assert _res2.get() == res2
... print ""
...
>>> def test3(pool): # test against a function that should fail in pickle
... print pool
... print "x: %s\n" % str(x)
... print pool.map.__name__
... start = time.time()
... res = pool.map(square_plus_one, x)
... print "time to results:", time.time() - start
... print "y: %s\n" % str(res)
...
>>> def test4(pool, maxtries, delay):
... print pool
... m = pool.amap(busy_add, x, x)
... tries = 0
... while not m.ready():
... time.sleep(delay)
... tries += 1
... print "TRY: %s" % tries
... if tries >= maxtries:
... print "TIMEOUT"
... break
... print m.get()
...
>>> import time
>>> x = range(18)
>>> delay = 0.01
>>> items = 20
>>> maxtries = 20
>>> from pathos.multiprocessing import ProcessingPool as Pool
>>> pool = Pool(nodes=4)
>>> test1(pool)
<pool ProcessingPool(ncpus=4)>
x: [0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17]
map
time to results: 0.0553691387177
y: [0, 1, 4, 9, 16, 25, 36, 49, 64, 81, 100, 121, 144, 169, 196, 225, 256, 289]
imap
time to queue: 7.91549682617e-05
time to results: 0.102381229401
y: [0, 1, 4, 9, 16, 25, 36, 49, 64, 81, 100, 121, 144, 169, 196, 225, 256, 289]
amap
time to queue: 7.08103179932e-05
time to results: 0.0489699840546
y: [0, 1, 4, 9, 16, 25, 36, 49, 64, 81, 100, 121, 144, 169, 196, 225, 256, 289]
>>> test2(pool, items, delay)
<built-in function map>
<bound method ProcessingPool.map of <pool ProcessingPool(ncpus=4)>>
<bound method ProcessingPool.imap of <pool ProcessingPool(ncpus=4)>>
<bound method ProcessingPool.amap of <pool ProcessingPool(ncpus=4)>>
>>> test3(pool)
<pool ProcessingPool(ncpus=4)>
x: [0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17]
map
time to results: 0.0523059368134
y: [1, 3, 9, 19, 33, 51, 73, 99, 129, 163, 201, 243, 289, 339, 393, 451, 513, 579]
>>> test4(pool, maxtries, delay)
<pool ProcessingPool(ncpus=4)>
TRY: 1
TRY: 2
TRY: 3
TRY: 4
TRY: 5
TRY: 6
TRY: 7
[0, 2, 4, 6, 8, 10, 12, 14, 16, 18, 20, 22, 24, 26, 28, 30, 32, 34]